NSOM Investigations of the Spectroscopy and Morphology of Self-Assembled Multilayered Thin Films

نویسندگان

  • Josef Kerimo
  • David M. Adams
  • David M. Kaschak
  • Thomas E. Mallouk
چکیده

Near-field scanning optical microscopy (NSOM) and atomic force microscopy (AFM) have been employed to spatially resolve the complex nanoscale morphologies, spectroscopy, and energy-transfer efficiencies of self-assembled multilayered structures composed of alternating layers of R-zirconium phosphate [R-Zr(HPO4)2] (ZrP) and dye-labeled poly(allylamine hydrochloride) (dye-PAH) (where dye ) Fluorescein (FL), Rhodamine B (RhB), or Texas Red (TR)). Two types of multilayer films have been investigated, namely, glass/anchor/ ZrP/dye-PAH and glass/anchor/ZrP/dye-PAH/ZrP/dye-PAH, which were formed by the sequential layer-bylayer adsorption of the charged polyelectrolyte component layers. Highand low-coverage films were investigated. The glass/anchor/ZrP assemblies were shown to consist of a densely packed “tiled” motif of ZrP sheets which lie flat on the surface and cover more than 95% of the area, with average plate sizes of height ) 13 (7) Å, width ≈ 150 nm. The dye-labeled polymer layers in glass/anchor/ZrP/dye-PAH and glass/ anchor/ZrP/dye-PAH/ZrP/dye-PAH were shown to adhere to the surface of the ZrP sheets and fill in the cracks between the sheets to a lesser extent. The measured heights of these polymer-coated multilayer films are 26(9) and 48(15) Å, respectively. These heights are consistent with theoretical estimates of ideally packed ionic films (28 and 48 Å, respectively). Dual-wavelength fluorescence NSOM imaging at 580 nm and >610 nm and near-field photobleach experiments were used to spatially resolve nanoscopic regions that display energy transfer between the layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale morphology of polyelectrolyte self-assembled films probed by scanning force and near-field scanning optical microscopy

We applied shear force microscopy, an analog to attractive-mode atomic force microscopy, and near-field scanning optical microscopy (NSOM) to the study of surface roughness and nanoscale morphology in polyelectrolyte self-assembled layers. Our data show that the surface roughness of multilayer films on glass grows linearly with the number of polyelectrolyte bilayers for the first 10 bilayers, a...

متن کامل

Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films

Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...

متن کامل

Investigations on structural and electrical properties of Cadmium Zinc Sulfide thin films

Nowadays, II – IV group semiconductor thin films have attracted considerable attention from the research community because of their wide range of application in the fabrication of solar cells and other opto-electronic devices. Cadmium zinc sulfide (Zn-CdS) thin films were grown by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) is used to analyze the structure and crystallite ...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

Nano-structural Characterization of Post-annealed ZnO Thin Films by X-ray Diffraction and Field Emission Scanning Electron Microscopy

ZnO thin films were deposited on Si(400) substrates by e-beam evaporation technique, and then post-annealed at different annealing temperatures (200-800°C). Dependence of the crystallographic structure, nano-strain, chemical composition and surface physical Morphology of these layers on annealing temperature were studied. The crystallographic structure of films was studied using X-Ray Diffracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998